تحویل اکسپرس

تحویل فوری و سالم محصول

پرداخت مطمئن

پرداخت از طریق درگاه معتبر

ضمانت کیفیت

تضمین بالاترین کیفیت محصولات

پشتیبانی

پشتیبانی تلفنی

شبکه ی عصبی و چگونگی پیاده سازی آن در نرم افزار مطلب



شناسه محصول: 612282
موجود

شبکه ی عصبی و چگونگی پیاده سازی آن در نرم افزار مطلب

برای مشاهده ضمانت خرید روی آن کلیک نمایید

قیمت : 13000تومان

برچسب ها :

شبکه ی عصبی و چگونگی پیاده سازی آن در نرم افزار مطلب

شبکه ی عصبی و چگونگی پیاده سازی آن در نرم افزار مطلب

شبکه ی عصبی و چگونگی پیاده سازی آن در نرم افزار مطلب

شبکه ی عصبی و چگونگی پیاده سازی آن در نرم افزار مطلب

129 صفحه 

فقط 13000 تومان 

 

 

چکیده:

شبکه­ی عصبی یک برنامه نرم افزار یا تراشه ی نیمه هادی است که بتواند همانند مغز انسان عمل نماید، به گونه ای که :

الف: به مرور زمان وتعامل بیشتر با محیط، کارآزموده تر گردد.

ب: علاوه بر انجام محاسبات قادر به نتیجه گیری منطقی باشد.

ج: در شرایط جدید راهکار مناسب ارائه دهد.

مغز انسان میلیون ها شبکه ی عصبی دارد که وظیفه ی ذخیره کردن وپردازش اطلاعات را به عهده دارند. کیکی از سلول های عصبی معروف به نرون است که فقط ده درصد حجم مغز را تشکیل میدهد. سلول های عصبی قادرند تا با اتصال به یکدیگر تشکیل شبمه های عظیم بدهند. گفته می شود هر نرون می تواند به هزار یا ده هزار نرون دیگر اتصال یابد. قدرت خارق العاده مغز انسان از تعداد بسیار زیاد نرون ها و ارتباط بین آن ها ناشی می شود.این میلیون ها سلول عصبی مثل میلیون ها cpu هستند که هرکدامشان به چند هزار cpu مجاور مثل شبکه به هم متصل شده اند. این مجموعه ها را می توان با شبکه ای از کامپیوترهای متصل به اینترنت مقایسه کرد. سلول های مغز ما در انجام کارهای مختلف هماهنگ باهم ودر جهت یک هدف مشخص و مشترک فعالیت می کنند ولی کامپیوترهای متصل به اینترنت هرکدام متسقل کار می کنند و نه در جهت هدفی مشترک. در نتیجه با این که هرکدام از سلول های مغز ما از کامپیوترها ضعیف تر هستند ولی با پردازش موازی می توانند پردازش اطلاعات قوی تری انجام دهند. پردازش موازی در مغز به این گونه است که هرکدام از اعمال دیدن، شنیدن، لمس کردن و .... می وتاند مستقل از هم و همزمان انجام شوند. کامپیوترها هم می توانند آنقدر سریع شوند تا به روش سریال اعمال دیدن، لمس کردن، فکر کردن و.... را به ترتیب انجام دهند و چون سرعت کامپیوتر بسیار بالاست و تصور ما بر این است که تمام اعمال همزمان انجام می گیرند

در حالت کلی، یک شبکه عصبی زیستی از مجموعه یا مجموعه‌ای از نرون‌های به صورت فیزیکی به هم متصل یا از لحاظ عملکردی به هم وابسته تشکیل شده‌است. هر نرون می تواند به تعداد بسیار زیادی از نرون‌ها وصل باشد و تعداد کل نرون‌ها و اتصالات بین آن‌ها می تواند بسیار زیاد باشد. اتصالات، که به آن‌ها سیناپس گفته می‌شود، معمولاً از آکسان ها و دندریت‌ها تشکیل شده‌اند.

 

فهرست مطالب

    عنوان                                                                                                     صفحه

چکیده:............................................................................................................................................................................................................................................................................  i

فصل اوّل: شبکه ی عصبی

1-1 شبکه های عصبی................................................................................................................ 2

1-2- تاریخچه شبکه ی عصبی..................................................................................................... 2

1-3- ساختار شبکه های عصبی..................................................................................................... 2

1-4- شبکه ی عصبی چیست؟...................................................................................................... 3

1-5- شبکه های عصبی در مقابل کامپیوترهای معمولی........................................................................ 4

1-6- تقسیم بندی شبکه های عصبی.............................................................................................. 5

1-7- شباهت با مغز................................................................................................................... 6

1-8- خلاصه سازی با شبکه ی عصبی............................................................................................. 7

1-8-1- قابليت يادگيري............................................................................................................. 8

1-8-2- پراكندگي اطلاعات پردازش اطلاعات به صورت متن.................................................................. 8

1-8-3- قابليت تعميم................................................................................................................ 9

1-8-4- پردازش موازي............................................................................................................... 9

1-8-5- مقاوم بودن................................................................................................................... 9

1-9- چگونه مغز انسان می آموزد و معایب شبکه ی عصبی.................................................................. 11

1-10- معایب شبکه های عصبی................................................................................................. 12

1-11- چرا از شبکه ی عصبی استفاده می کنیم؟.............................................................................. 13

1-11-1-کاربردهای شبکه ی عصبی............................................................................................. 14

1-11-2- کاربردهای حرفه ای و بازرگانی....................................................................................... 16

1-11-3- جو زمین و فضای ماورای زمین....................................................................................... 17

1-11-4- خودرو و مسایل مربوط به خودرو سازی............................................................................. 17

1-11-5- بانکداری.................................................................................................................. 17

1-11-6- کنترل سازی فعالیت................................................................................................... 17

1-11-7- پزشکی................................................................................................................... 18

1-11-8- نفت و گاز................................................................................................................ 18

9-12-1 ماشین آلات و دستگاه خودکار......................................................................................... 18

10-12-1 تأمین امنیت و آسایش................................................................................................. 18

11-12-1 مخابرات تلفنی و ارتباط با دور برد................................................................................... 18

12-12-1 حمل و نقل.............................................................................................................. 18

13-12-1 خلاصه................................................................................................................... 19

فصل دوّم: شبکه ی عصبی زیستی و مصنوعی

2-1-  شبکه های عصبی زیستی.................................................................................................. 21

2-2- تاریخچه شبکه های عصبی مصنوعی:..................................................................................... 21

2-3- شبکه عصبی مصنوعی....................................................................................................... 22

2-4- معایب ANN ها........................................................................................................... 24

2-5- شبكه عصبي مصنوعي ساده :.............................................................................................. 25

2-6- شبكه هاي پرسپترون چند لايه :.......................................................................................... 27

فصل سوّم: نرون و ساختار آن

3-1- روش کار نرون................................................................................................................ 30

3-1-1- ساختار نرون............................................................................................................... 31

3-1-2- نرون با چندین ورودی................................................................................................... 32

3-1-3- یک لایه از نرون ها....................................................................................................... 33

3-1-4- شبکه های چند لایه ای................................................................................................. 34

3-1-5- شبیه سازی شبکه عصبی................................................................................................ 34

3-1-6- مدل نرون.................................................................................................................. 36

3-1-7- نرون مصنوعی............................................................................................................. 36

3-1-8- از نرون‌های انسان تا نرون مصنوعی.................................................................................... 36

فصل چهارم :ایجاد شبکه عصبی

4-1- ایجاد و آموزش شبکه ی عصبی............................................................................................ 39

4-2- شبیه سازی.................................................................................................................... 40

4-3- روش پس انتشار خطا........................................................................................................ 40

فصل پنجم: تابع ها ی تصمیم گیری

5-1- انواع تابع تصمیم گیری...................................................................................................... 51

5-2- تابع hard limit............................................................................................................. 51

5-3- تابع خطی...................................................................................................................... 52

5-4- تابع log-sigmoid......................................................................................................... 52

5-5- تابع tan-sigmoid....................................................................................................... 53

فصل ششم : عملکردهای شبکه عصبی در مطلب

6-1- تغذیه شبکه عصبی.......................................................................................................... 55

6-1-1- شرح و توصیف:............................................................................................................ 55

6-2-1- شرح و توصیف:............................................................................................................ 58

6-2-2- شرح و توصیف:............................................................................................................ 58

6-3-  شبکه پایه ای و بنیادین شعاعی( محوری).............................................................................. 64

6-3-1- شرح و توصیف:............................................................................................................ 64

6-3-2-  شبکه در حال جریان یا به اصطلاح recurrent................................................................... 66

6-3-3- یادگیری در خصوص کوانتیزه نمودن برداری (LVQ)............................................................ 67

6-4-  مدل و الگوی عصبی........................................................................................................ 70

1-5-6 رشته با بردار وروردی...................................................................................................... 74

2-5-6 طراحی و ساختارهای شبکه............................................................................................... 77

3-5-6 لایه های ضرب شده (مضاعف) رشته ها................................................................................ 80

4-5-6 طراحی و ساختارهای داده و اطلاعات.................................................................................... 82

5-5-6 ظاهرسازی و تشابه با ورودی های متقارن در یک شبکه ایستا....................................................... 82

6-5-6 مشابه سازی با ورودی های متقارن در یک شبکه حرکتی............................................................ 84

فصل هفتم: پیوستگی ها

7-1- حالات پیوستگی.............................................................................................................. 90

7-2- پیوستگی در حال توسعه و ترقی........................................................................................... 90

7-3- پیوستگی رو به افزایش و ترقی با شبکه های ایستا...................................................................... 90

7-4- پیوستگی رو به ترقی و توسعه با شبکه های حرکتی.................................................................... 92

7-5- پیوستگی سازی در یک دسته.............................................................................................. 93

7-6- پیوسته سازی دسته با شبکه های ایستا.................................................................................. 93

فصل هشتم : بلوک ها

8-1- بلوک یا ساختار تنظیم.................................................................................................... 100

8-2- بلوک های سنگین......................................................................................................... 101

منابع................................................................................................................................. 114


 

فهرست اشکال

    عنوان                                                                                                     صفحه

شکل 1-1 بخشهای جزئی تر از یک شبکه عصبی........................................................................................................ 11

شکل 1-2: نمایش ساختاری نرون................................................................................................................................ 23

شکل 2-2: نمایش شبکه ی عصبی مصنوعی ساده...................................................................................................... 25

شکل 3-2 مثال:............................................................................................................................................................. 26

شکل 4-2: نقش تابع در خروجي شبكه........................................................................................................................ 26

شکل 5-2: نمایش شبكه هاي پرسپترون از يك لايه ورودي....................................................................................... 27

شکل 1 -3: نمایش نرون............................................................................................................................................... 30

شکل 2-3: نمایش ساختار نرون................................................................................................................................... 31

شکل 3-3: نمایش ساختار نرون پیچیده...................................................................................................................... 32

شکل 4-3: نمایش شکل یک نرون با چندین ورودی................................................................................................... 33

شکل 5-3: نمایش یک لایه شبکه با R ورودی و S نرون........................................................................................... 33

شکل 6-3: نمایش بلوک دیاگرام شبکه........................................................................................................................ 34

شکل 7-3: نمایش یک نرون ساده با R ورودی............................................................................................................ 36

نمودار 4-4: تابع performance برحسب epochآموزش به روش polak-update.............................................. 48

شکل 1-5: نمایش تابع hard limit............................................................................................................................ 51

شکل 2-5: نمایش تابع خطی........................................................................................................................................ 52

شکل 3-5: نمایش تابع log-sigmoid....................................................................................................................... 52

شکل 4-5: نمایش تابع tan-sigmoid....................................................................................................................... 53

نمودار 6-1: » y=sim(net,p).................................................................................................................................... 57

نمودار 6-2 y=sim(net,an)....................................................................................................................................... 61

شکل 1-6: یک رشته با یک ورودی بدون بایاس......................................................................................................... 70

شکل 2-6: عملکردهای انتقال دهنده خروجی صفر...................................................................................................... 72

شکل 3-6: نمایش عملکرد و تابع خطی انتقال دهنده.................................................................................................. 73

شکل 4-6:  نمایش تابع و عملکردهای انتقال دهنده حلقوی....................................................................................... 73

شکل 7-6: نمایش جریان های ضرب شده و مضاعف رشته ها..................................................................................... 76

شکل 8-6: لایه عصبی با عناصر ورودی R و رشته های S.......................................................................................... 77

شکل 9-6: نمایش شبکه تک لایه ای........................................................................................................................... 78

شکل 10-6: شبکه ورودی ضرب شده تک لایه ای....................................................................................................... 79

شکل 11-6: نمایش نمادسازی در شبکه های سه لایه ای........................................................................................... 81

شکل 12-6: نمایش ظاهرسازی و تشابه با ورودی های متقارن در یک شبکه ایستا.................................................... 83

شکل 13-6: نمایش مشابه سازی با ورودی های متوالی در یک شبکه حرکتی........................................................... 85

شکل 1-8: نمایش سه بلوک ساختاری...................................................................................................................... 100

شکل 2-8: نمایش بلوک انتقال دهنده...................................................................................................................... 101

شکل 3-8: نمایش مشتمل بر 4 بلوک ساختاری....................................................................................................... 103

شکل 1-9: رشته ساده................................................................................................................................................ 106

شکل 2-9: محدوده سخت در عملکرد انتقال دهنده.................................................................................................. 106

شکل 3-9: عملکرد انتقال دهنده خط تنزل یافته..................................................................................................... 107

شکل 4-9: لگاریتم s مانند (خط s مانند) در عملکرد انتقال دهنده....................................................................... 107

شکل 5-9: رشته با بردار وردی................................................................................................................................... 108

شکل 6-9: رشته تکی در حال استفاده کردن از نمادسازی خلاصه شده................................................................... 108

شکل 7-9: آیکون ها برای عملکردها و توابع انتقال دهنده........................................................................................ 108

شکل 8-9: لایه های رشته ها که............................................................................................................................... 109

شکل 9-9: یک لایه رشته ها..................................................................................................................................... 109

شکل 10-9: لایه های رشته ها – نمادسازی خلاصه شده........................................................................................ 110

شکل 11-9:لایه رشته ها که در اندیس ها نشان داده شده است که........................................................................ 111

شکل 12-9: سه لایه رشته ها.................................................................................................................................... 111

شکل 13-9:سه لایه ها با نمادسازی خلاصه شده..................................................................................................... 112

شکل 14-9:رشته های خطی با دو عنصر در بردار ورودی......................................................................................... 112

شکل 15-9:شبکه های حرکتی با تأخیر و تعلل........................................................................................................ 113

 

 

فهرست نمودارها

    عنوان                                                                                                     صفحه

نمودار 1-4: تابع performance برحسب epoch............................................................................ 43

نمودار 2-4: تابع performance برحسب epochبرای آموزش با نرخ آموزش متغیر.................................... 45

نمودار 3-4: تابع performance برحسب epochآموزش به روش flctcher........................................... 47

 

 


خرید آنلاین


سایر محصولات

دانلود تحقیق کاربرد مدل شبکه عصبي مصنوعی در مدیریت منابع آب زیرمینی


استفاده از شبکه عصبي در پیش بینی متغیرهای منابع آبی از جمله آب زیرزمینی بطور گسترده رو به افزایش است. این تحقیق از طریق شبکه عصبي مصنوعی چندین هدف را دنبال می کند، که شامل تعیین پارامترهای موثر بر نوسانات سطح

ادامه مطلب  
تحقیق در مورد شبكه های عصبي مغز


فرمت فایل:WORD(قاببل ویرایش)تعدا34 صحفه     آیا تا به حال فكر كرده‌اید كه ما چگونه مطلبی را می‌آموزیم؟ چقدر و با چه سرعتی یاد می‌گیریم؟ مغز ما چگونه می‌تواند یك مسأله را حل كند؟ آیا تا به حال به نحوه&z

ادامه مطلب  
آشنایی با شبکه‌های عصبي و مصنوعی


آشنایی با شبکه‌های عصبي و مصنوعی86 صفحه قابل ویرایش قیمت فقط 8000 تومان   چکیده          امروزه شبکه‌های عصبي کاربردهای مختلف و دارای دامنه‌ی کاربرد وسیعی می‌باش

ادامه مطلب  
تحقیق جامع و کامل درباره شبکه های عصبي مصنوعی


فرمت فایل : word  (لینک دانلود پایین صفحه) تعداد صفحات 152 صفحه    چكیده شبكه های عصبي مصنوعی در بسیاری از موارد تحقیق و در تخصص های گوناگون به كار گرفته شده و به عنوان یك زمینه تحقیقاتی بسیار فعال حاصل همكار

ادامه مطلب  
شبکه ی عصبي و چگونگي پياده سازي آن در نرم افزار مطلب


شبکه ی عصبي و چگونگي پياده سازي آن در نرم افزار مطلب129 صفحه فقط 13000 تومان   چکیده: شبکه­ی عصبي یک برنامه نرم افزار یا تراشه ی نیمه هادی است که بتواند همانند مغز انسان عمل نماید، به گونه ای که :الف: ب

ادامه مطلب  
پاور پوینت (اسلاید) پياده سازي سیستم فایل


 با سلام
فایل پياده سازي سیستم فایل یک پاورپوینت بسیار عالی در 212 اسلاید می باشد این PowerPoint بر اساس استاندارد های اصلی طراحی پاورپوینت آماده و تنظیم شده است؛ این فایل دارای طراحی بسیار عالی و چشم نواز می باشد.
شما با استفاده از

ادامه مطلب  
مقدمه ای بر شبكه های عصبي


مقالات  ریاضی  با فرمت           DOC           صفحات  981 مقدمه      در سالیان اخیر شاهد حركتی مستمر، از تحقیقات صرفاً تئور

ادامه مطلب  
تحقیق در مورد محاسبه فركانس غالب ورقها با استفاده از شبکه عصبي انتشار برگشتی Back Propagation (BP)


44 صفحه word|فونت tahoma سایز 14| قابل اجرا در آفیس 2007 و نسخه های جدیدتر|قابل ویرایش و آماده چاپبخشی از تحقیقفصـل دوم : شبكه های‌ عصبي مصنوعی   2-1

ادامه مطلب  
نرم افزار تگ ساز، برچسب ساز، ساخت کلمات کلیدی دانا و توانا نسخه ساده


نرم افزار تگ ساز برچسب ساز ساخت کلمات کلیدی دانا و توانا برای وبسایت ها، وبلاگ ها، فروشگاههای اینترنتی و انجمن ها نرم افزاری برای افزایش ورودی موتورهای جستجو از طریق کلمات کلیدی ، برچسب و تگ ها توجه : نرم

ادامه مطلب  
دانلود پایان نامه رشته کامپیوتر شبکه های عصبي


متن کامل این پایان نامه را  با فرمت ورد word دانلود نمائید   عنوان تحقیق : شبکه های عصبي مقدمه الگوریتم ها در کامپیوتر ها اعمال مشخص و واضحی هستند که بصورت پی در پی و در جهت رسیدن به هدف خاصی انجام می شوند.حتی در

ادامه مطلب  
logo-samandehi